Сегодня реактивные двигатели полностью обеспечивают энергетические потребности самолетов. Их принцип действия основан на сжигании топлива и образовании выхлопных газов, которые и создают силу тяги. Однако использование такого двигателя наносит ущерб экологии. Именно из-за него уровень шума повышен как в салоне самолета, так и на расположенной вблизи аэродрома местности.
Альтернатива реактивному двигателю — электрический. Проблема в том, что удельная мощность современных электродвигателей для авиации не превышает 5 кВт/кг, в то время как реактивные обладают мощностью до 8 кВт/кг. То есть замена повлечет за собой снижение грузоподъемности самолета. Поэтому пока такой переход экономически нецелесообразен.
Однако применение сверхпроводниковых материалов способно увеличить удельную мощность электродвигателей. Ведь главная особенность сверхпроводников — значительное снижение или даже полное отсутствие электрического сопротивления. Следовательно, величина тока, обратно пропорциональная сопротивлению, возрастает, а вместе с ней увеличивается и мощность двигателя.
Ученые МАИ задействовали сверхпроводниковые материалы при создании различных типов электрических машин. Пока это еще не полноценные самолетные двигатели, а лишь база для них — участок, где происходит преобразование энергии из электрической в механическую.
— Наш коллектив рассмотрел концепцию электрического самолета с гибридной силовой установкой и сверхпроводниковыми электрическими машинами, — рассказал «Известиям» завкафедрой «Электроэнергетические, электромеханические и биотехнические системы» МАИ Константин Ковалев. — Эта система состоит из газотурбинного двигателя, вращающего электрический генератор, электродвигателя и кабельной линии, соединяющей их. Удельная мощность такой установки составляет свыше 10 кВт/кг, то есть больше, чем у реактивного двигателя.
Также в установку входит система криогенного обеспечения. Дело в том, что сверхпроводники обладают низким сопротивлением только при очень низких температурах. Сейчас для охлаждения разработчики применяют жидкий азот, температура которого -196 градусов по Цельсию. Использование хладагента также практически полностью блокирует возможность возгорания в случае короткого замыкания проводки, что повышает безопасность на борту самолета. Поддерживать криогенную температуру планируется бортовыми системами криообеспечения, которые сегодня достаточно компактны для применения в авиации.
— Основная сложность перевода летательных аппаратов с реактивных на электрические двигатели заключается в необходимости перестроения всех внутренних систем самолета, — пояснил доцент МАИ Дмитрий Дежин. — Чтобы такой переход был эффективен с точки зрения экономики, необходимо не просто сравнять удельную мощность электрических двигателей с турбинными, а значительно увеличить.
По мнению авторов работы, это можно будет осуществить, перейдя на охлаждение сверхпроводниковых двигателей жидким водородом (-253 градуса по Цельсию). Данная степень охлаждения сверхпроводников способна повысить удельную мощность двигателя до 30 кВт/кг. Но на данный момент проблема применения жидкого водорода заключается в том, что он взрывоопасен, дорого стоит и требует немало энергии для производства.
По словам ведущего научного сотрудника лаборатории сверхпроводящих метаматериалов НИТУ «МИСиС» Александра Карпова, использовать сверхпроводящие электромоторы может быть выгодно скорее для больших кораблей, чем для самолетов, причем основной интерес будет вызывать уменьшение размеров и веса, а не экологические факторы, пока зарядка батарей для электродвигателя осуществляется от станций, сжигающих газ или мазут.