Перспективный комплекс бортового оборудования (КБО) должен иметь открытую архитектуру на базе интегрированной модульной авионики (ИМА, см. «Авиапанорама» №4-2011. Прим. ред.). Важной особенностью такой архитектуры является отсутствие «жестко» установленных связей между информационными каналами и вычислительными средствами. Это позволяет реализовать динамическую реконфигурацию структуры КБО с соответствующим перераспределением ресурсов.
Авионика ближайшей перспективы должна обладать принципиально новыми качествами, связанными с кардинальными изменениями процессов ее разработки, проектирования, применения и обслуживания. Основными направлениями развития авионики являются:
• создание унифицированного ряда открытых сетевых архитектур и комплектующих КБО с целью увеличения производительности, надежности передачи и обработки информации;
• применение перспективных интерфейсов (авиационной Ethernet, Fibre Channel, RapidIO, Wi-Fi);
• внедрение перспективных схемотехнических и конструктивных решений для функциональных модулей: многоядерных процессоров, систем «на кристалле», высокопроизводительных графических модулей, сетевых коммутаторов и т.д.;
• создание интегрированной автоматизированной среды разработки КБО;
• совершенствование информационно-управляющего поля кабины экипажа.
Неизбежные изменения информационно-управляющего поля кабины экипажа вызваны прогнозируемым ростом интенсивности воздушного движения, требованиями радикального повышения уровня безопасности полетов.
С появлением в 1970-е годы первых электронных индикаторов, по мере роста технологических возможностей, постоянно увеличивалась доля и информационная емкость электронной индикации кабины экипажа ВС, увеличивались размеры экранов и повышалось качество информационного обеспечения летного состава.
Определилась тенденция к использованию экранов индикаторов в качестве многофункциональных пультов управления.
Для высокой надежности большие индикаторы должны иметь сегментированный экран, каждый из сегментов которого может работать автономно. Вполне возможно, что в конечном итоге один индикатор займет всю приборную доску, точнее, приборная доска станет единым электронным индикатором (то есть станет виртуальной). Такие приборные доски уже реализуются в экспериментальных разработках ведущих компаний.
Усилия разработчиков систем индикации должны быть направлены на то, чтобы сделать представление полетных данных более естественным и интуитивно понятным летчику, исключить необходимость перевода «сырых» данных, создать «образное» информационное поле с обеспечением минимального времени на считывание информации.
Виртуальная приборная доска позволит достичь гибкости в представлении информации: если прежде прибор занимал место на доске постоянно, независимо от того, сколько времени он используется в полете, то на виртуальной доске его информация будет появляться только по мере необходимости. Взамен жидкокристаллических индикаторов можно ожидать использование проекционных и органических электролюминесцентных индикаторов. Возможно появление индикаторов не прямоугольной, а более сложной формы.
В России работы по созданию КБО с открытой архитектурой на базе ИМА проводятся с 2004 г. Головным исполнителем и координатором комплексного проекта является ФГУП «ГосНИИАС». В проекте принимают участие основные предприятия авиаприборостроения РФ. Создан уникальный научно-технический задел, позволяющий существенно сократить затраты на разработку и последующие модификации бортового оборудования, сократить сроки его разработки, заложить возможности технологического расширения спектра решаемых задач с минимальными затратами средств.
В настоящее время на предприятиях отечественного приборостроения разрабатываются унифицированные комплектующие бортового оборудования на принципах ИМА. Как показывает отечественный и мировой опыт, снизить технические, финансовые и временные риски позволяют летные исследования концептуальных решений и летные испытания прототипов перспективного оборудования. Организация экспериментальных работ на летающих лабораториях позволит подготовить материальную и методическую основу для сертификационных испытаний перспективных комплексов и их отдельных элементов, в том числе по международным стандартам (TSO, ETSO).
В программе создания перспективной отечественной авионики ФГУП «Пилотажно-исследовательский центр» – головной исполнитель работ в части:
• разработки информационно-управляющего поля кабин летательных аппаратов;
• стендовых и летных исследований перспективных функций, организации испытаний бортового оборудования.
Пилотажно-исследовательский центр выполняет работы в кооперации с ФГУП «ГосНИИАС», ФГУП «ЦАГИ
им. проф. Н.Е. Жуковского», ОАО «ЛИИ им. М.М. Громова», ОАО «ЭМЗ им. В.М. Мясищева», ОАО «ОКБ Сухого», ФГУП «НПЦ газотурбостроения «Салют», ОАО «РПКБ» и другими предприятиями.
Работа направлена на достижение следующих целей:
1. Исключение авиационных происшествий по причинам:
- потери пространственного положения,
- неадекватного восприятия основных параметров движения летательного аппарата, информации от бортовых систем,
- опасных сближений с воздушными судами и земной поверхностью, препятствиями.
2. Обеспечение выполнения всех этапов полетного задания от выруливания до заруливания без визуальной видимости закабинного пространства, в том числе при отсутствии сигналов спутниковых навигационных систем, радио- и светотехнического оборудования аэропорта.
3. Реализация концепции пилотирования воздушного судна транспортной категории одним пилотом.
4. Обеспечение высокой эффективности воздушных, в том числе сверхзвуковых перевозок.
Разработан прототип перспективного информационно-управляющего поля кабины воздушного судна гражданской авиации, обеспечивающего новое качество:
- сокращение времени восприятия, анализа информации на принятие решения и реализацию управляющих действий, уменьшение рабочей загрузки экипажа путем комбинированного отображения полетной информации на широкоформатных многофункциональных индикаторах диагональю 15 и 21,5 дюймов;
- унификация способов управления радиоэлектронным и пилотажно-навигационным оборудованием путем интеграции пультов управления;
- реализация новых способов управления информационным полем, настройки бортового радиоэлектронного оборудования посредством сенсорных экранов и голосового управления.
Для отработки прототипа информа¬ционно-управляющего поля кабины, исследования перспективных функций созданы наземные демонстраторы кабины и летающие лаборатории на базе самолетов Су-30 и М-101Т «Гжель».
Проведены испытания прототипов перспективного бортового оборудования ИМА, выполнены летные исследования перспективных функций, в том числе функции улучшенного видения. Пилотирование выполнялось только по информации МФИ от датчиков ТВ и ИК диапазонов, а также по синтезированному изображению взлетно-посадочной полосы, рулежных дорожек. Положение летательного аппарата относительно объектов аэродромной инфраструктуры определялось по данным спутниковой навигационной системы в относительном и дифференциальном режимах.
Всего выполнено более 86 полетов (около 730 заходов на посадку, 400 с касанием), из них:
- 6 полетов ночью, без включения посадочных фар самолета и прожекторов аэродрома (67 заходов, 35 посадок);
- 16 полетов с выполнением всех этапов полетного задания от выруливания до заруливания пилотирующим летчиком в закрытой кабине (под шторкой) (118 заходов на посадку, 62 посадки);
- 2 полета в реальных СМУ на а/д Раменское и Североморск-3 при погоде ниже установленного метеоминимума (H нижнего края 40-60 м, видимость менее 800 м в условиях снежного заряда);
- 10 полетов на авиасалоне «Авиасвит-XXI» (Украина) с выполнением фигур сложного и высшего пилотажа;
- 7 полетов с заходами на посадку на ТАКР «Адмирал Кузнецов» (53 захода, 2 посадки с уходом на
2-й круг).
Подтверждено кардинальное повышение информационного обеспечения летчика при выполнении всех этапов полетного задания, включая руление, взлет, посадку без видимости внекабинного пространства, а также при выполнении сложных пространственных маневров.
Согласно летной оценке, комплекс индикации обеспечивает высококачественное информирование летчика о параметрах полета, состоянии самолетных систем и силовой установки, радикально упрощает пилотирование и решение задач самолетовождения от взлета до посадки и на рулении.
Новые технические решения обеспечили выполнение точного захода на посадку ЛЛ Су-30, без использования штатных посадочных систем ТАКР «Адмирал Кузнецов». Применение новых технологий информационного обеспечения экипажа позволит повысить надежность и качество выполнения всех этапов полета, включая руление, взлет и посадку самолетов, вертолетов и беспилотных ЛА, в простых и сложных метеорологических условиях.
Созданный научно-технический задел определяет перспективные направления совершенствования комплексов бортового оборудования воздушных судов в обеспечение развития его функциональных возможностей, повышения надежности, сертификации в соответствии с международными стандартами, существенного сокращения затрат на разработку и модификацию, снижение массогабаритных характеристик, характеристик энергопотребления. А это является основой конкурентоспособности оте¬чест¬венных предприятий приборостроения.